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1 Project Information

Title Dag: A data-parallel, domain-specific programming language
Website https://nick-and-dan.github.io/418/
Repository https://github.com/ncik-roberts/dag

2  Summary

We designed and implemented a high-level, domain-specific data-parallel programming language
based off of the notion of modeling program structure as a directed acyclic graph. This lan-
guage benefits from a variety of parallel primitives available to the user that provide alternative
compilation strategies (among which the compiler can choose when constructing the output
program). To demonstrate the potential of this language for parallel computation, we compile
a variety of benchmark programs to CUDA. We emphasize the ease of development in this
language, and claim that a programmer can implement correct programs that take advantage
of the majority of available parallelism in a target with less effort.

3 Background

3.1 The state of GPU programming

GPUs provide programmers with an opportunity for a great deal of parallelism, and CUDA
is a popular programming language for harnessing this parallelism. The fundamental building
block of a CUDA program is the kernel launch, where the programmer indicates a task to be run
massively in parallel. A kernel launch is an information boundary: the programmer explicitly
copies whatever data on the host must be made available on the device; and, following the
conclusion of the launch, the programmer retrieves data from the device by another explicit
copy. The programmer designates what portion of data to process within the task itself, with
the executing core recovering its designated portion by doing arithmetic on the thread index
and block index.

A programmer is therefore faced with several decisions when writing a CUDA program:

e A program normally consists of nested iteration patterns over data. Which of these itera-
tions should be converted to kernel launches, and which of these should be run sequentially
on the host?

e Later computations in the program use the result of previous computations. Should
additional buffers be allocated to store the result of earlier computation, or can the later
computation recover the results without needing to read from memory?

Once a programmer has fixed an iteration scheme and decides what memory needs to be
allocated, she must provide a correct implementation of several things:

e Determining the partition of data associated with each instance.

e Determining which data must be sent between the host and the device.
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When tuning performance, for each configuration of decisions, the programmer has to reim-
plement this decomposition and data transfer. As such, trying out multiple configurations of
iteration and allocation schemes is costly. In addition, in our experience, the indexing code is a
source of hard-to-find arithmetic errors when, in theory, the designation of most static partitions
should be automatically derivable from the indexing scheme.

Our project is concerned with reducing the cost of considering the many alternatives of
parallelizing a program with CUDA. Given a specification by the programmer, we do this
by performing a search over the possible decisions listed above, automatically generating the
implementation associated with that decision. The specification by the programmer is in the
form of a program, naturally, in a high-level data-parallel language; the output is a CUDA
program that maximizes some heuristic.

3.2 Example program

We name our language Dag for reasons that, if not self-explanatory, will be made clear shortly.
To motivate further discussion, we include the source text for an example program for performing
matrix-matrix multiplication:

int [1[] multiplyMatrixMatrix(int(][] m1, int[][] m2){
return for (int[] row : mi1) {
return for (int[] col : transpose(m2)) {
return reduce(+, 0, zip_with(*, row, col));
};
};
}

The structure of a program is comparable to C, with two major departures: (1) the exclusion
of for-loops in favor of for-expressions that denote performing a series of computations at each
element of an array, and (2) the inclusion of parallel primitives, like reduce and zip_with.

The for-expression is the building block of a dag program. It is analogous to a “map”
operation whose body can refer to variables in the enclosing scope. This is a limited form of
closure. The result of evaluating an expression for (type x : expr) { stmts } is the array
consisting of the return value of the stmts body on each element x of the array expr. In the
above matrix multiplication example, the outer for loop iterates over m1, binding the variable
row to stand for a row of m1. The outer loop immediately returns another for-expression; this
one binds a variable col to stand for each row of the transposition of m2 (i.e. each column
of m2), and immediately returns the result of summing the products of corresponding elements
of row and col. Hence, the return value of the outermost multiplyMatrixMatrix function is
a 2D array each of whose elements is the result of running reduce(+, 0, zip_with(*, row,
col)) for the appropriate substitution for row and col.

3.3 Structure, and data structures, of output CUDA program

When discussing the data structures of our project, it’s our duty to talk both about the data
structures we used in the compiler and the meta data structures used in the output CUDA
program’s runtime. The CUDA data structures bear more relevance to parallelism, but for
completeness, we discuss both.

The core data structure is buffers to hold the result of the massively-parallel operations
indicated by for-expressions and parallel primitives in the source language. These buffers,
unlike the apparently-multidimensional arrays in the source language, are single-dimensional to



avoid indirection. The dagc compiler automatically inserts instructions to allocate and transfer
these buffers based on the structure of the source program.

We allow for user-defined data structures, such as structs, to increase the expressivity of the
language, but this is for convenience, not out of necessity.

Paradoxically, the data structure we use to greatest success is the absence of a data structure.
Many of the arrays that appear in the source program end up not being represented at all in
the generated CUDA. Consider again the matrix multiplication example: it would be wasteful
if the call to transpose(m2) were performed in memory at all, let alone for each iteration of
the outer loop. Enter the array view. An array view is an array that, despite being explicitly
represented in the input program, will be turned into an iteration scheme in the output CUDA.
That is, the data apparently stored in an explicit Dag array is instead computed as needed in
a CUDA loop.

Absent parallelism, and absent explicit arrays, the matrix multiplication example will com-
pile to a C program that roughly looks like:

/% M1, N1, M2, and N2 would also be passed as the height and
x width of m1 and m2, respectively x/
void multiplyMatrixMatrix(int[] output, int[] ml, int[] m2) {
for (int i = 0; 1 < M1; i++) {
for (int j = 0; j < N2; j++) {
int acc = 0;
for (int kX = 0; k < M2; k++) {
acc += mi[i * M1 + k] * m2[k * M2 + j];
}
output[i * M1 + j] = acc;
}
}
}

There are some differences to note between the input program and the output program:

e The int[][] return value is instead represented as an output buffer, output, which is
updated incrementally as results are calculated.

e The int [][] parameters are instead flattened to int [] to lessen indirection.

e The transposition of m2 manifests only when the C code indexes into m2: as you can see
in the access m2[k * M2 + j], the indices j and k are reordered.

e The reduce is expanded into an explicit iteration that accumulates the result into acc;
the zip_with argument to reduce manifests only as the body of the for loop, where * is
applied, in sequence, to the corresponding elements of the arguments to zip_with.

Parallel operations and their associated semantics Table 1 describes the parallel operations
available to the user, along with the indexing scheme used to access the ith member of the array
view if the compiler chooses to not explicitly represent the array in the CUDA program. (The
sequential implementation for each of these is the obvious for-loop, so we do not elaborate on

this.)



Operation

Semantics

Parallel impl

Indexing scheme

for(r = : xs){stmts; }

Map the statements over each
element z of xs, with the re-
turn value of the statement
block being assigned to the
corresponding location of the
output.

Kernel launch.

N/A

zip_with(op, xs,ys)

Create an output array by
pairing corresponding loca-
tions in zs and ys and apply-
ing op.

Kernel launch.

wsli] op ysli]

filter_with(zs, bs)

Create an output array con-
sisting of the members of
xs where the corresponding
member of bs is set to true.

N/A.

N/A

reduce(op, id, s)

Combine all elements of zs
with op, where id is the iden-
tity of the operation.

Thrust call.

N/A

scan(op, id, xs)

Create an output array con-
sisting of the result of reduc-
ing every prefix of xs with id
and op.

Thrust call.

N/A.

range(n)

Create an array with elements
from 0 ton — 1.

Kernel launch.

transpose(zss)

Create the transposition of
xS$s.

Kernel launch.

Table 1: Parallel operations and their semantics
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3.4 Structure, and data structures, of compiler

The compiler’s main interesting data structure is the eponymous directed acyclic graph that
represents a program’s control flow. From this dag representation, the compiler generates all
possible traversals of the dag, and, following that, generates all possible parallelizations of each
traversal. More concretely, the compiler follows these steps:

1.

2.

4.

Creates a dag representation of the source program.
Generates all topological sorts of the dag.

For each topological sort, considers many possible alternatives for parallelizing the pro-
gram, including fusing loops, parallelizing inner loops, and parallelizing outer loops.

Choose the best available alternative based on some heuristic.

The astute reader will wonder why it is the Dag compiler’s responsibility to perform the
topological sort, since it hands off the result to nvcc -03 ultimately, anyway. The reason is
this: a kernel launch is an information barrier across which nvcc will not perform optimizations.
The Dag compiler must therefore consider alternatives where computation is performed prior
to a kernel launch versus within a kernel launch; one alternative may result in a better CUDA
program. Hence, dagc should indeed generate a dag.

Flow of compiler The compiler is structured as follows:

Abstract Abstract
Generated
DAG-IR | IR (Parallel) CUDA
IR
o T | 7767777{7\‘ o
: Type o ' _Inline | Peanr:fer | ' Analysis !
! Synthesis ! : Functions ! ' Configurations | | (Annotation) !
O f T |
' Generate ! | CUDA |
| Traversals | | Translation |
| ! | I

,,,,,,,,,,,,,,,,,,

Lex, Parse; AST; Type Synthesis. The standard compiler frontend, this converts the
unstructured source string provided by the user to a structured, typed tree that can be
analyzed by the rest of the compiler.

DAG IR. The compiled program is turned into an explicit dag representation. In this
representation, the user-written functions are inlined until there are no remaining function
calls (which is always possible, absent recursion).



3. Generate Traversals — IR. To reach this intermediate representation, all possible traver-
sals (topological sorts) of the dag representation are considered. Each topological sort
generates its own IR tree. In this IR phase, we still allow for nested parallel for blocks,
which is not feasible in the output CUDA (since it’s not possible to launch a kernel from
within a kernel launch).

4. Generate Parallel Configurations — Abstract IR. This transformation removes the nested
parallel blocks. There are, in general, multiple ways to remove nested parallel blocks from
a program while retaining the same semantics; this phase generates many possible such
configurations.

An optimization we perform is the ”fusing” of nested for blocks. Consider the loops:

return for (int x : xs) {
return for (int y : ys) {

}
¥

In CUDA, we can imagine wanting to assign a task for each possible pair (z,y) rather than
only parallelizing along xs or along ys. To accomplish this, we permit in the Abstract IR
phase for this program to take on form that looks like this:

return for (int x : xs, int y : ys) {
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which returns an |zs| X |ys| two-dimensional array where the body of the for-expression
is performed for each pairing (z,y).

5. Analysis (Annotation). In order to perform the final translation to CUDA, we must
collect a great deal of data about the Abstract IR form. In particular: the expressions
for indexing into array views (which allow the virtual iteration over array views without
explicitly allocating the array), the lengths of all arrays in the program (which allows for
flattening multidimensional array indexing into single-dimensional array indexing, as well
as the appropriate sizes for memcpy and cudaMalloc), and free variables in kernel launches
(which are those variables which must be copied from host to device when launching the
kernel).

6. CUDA Translation — CUDA. Generate CUDA for each Abstract IR tree generated from
the previous phase. Apply a heuristic, like total amount of memory allocated and arith-
metic intensity, to select the best CUDA implementation.

3.5 What stands to be gained

A question that arises in many parallel applications—what parts of the program stand to ben-
efit from parallelization?—takes on an interesting form when applied to a compiler. On one
hand, the answer is almost passé—the amount of parallelism the user will see in the output
CUDA is entirely dependent on the amount of parallelism made available in the source program
via use of parallel primitives and parallel for loops. On the other hand, it is interesting to
consider what class of input programs see good speedup when run through dagc. Based on
our benchmarks, reported in the Results section, the answer appears to be those programs that
perform many nested parallel for loops over data where the inner loop performs some inten-
sive arithmetic computation. This is consistent with the intuition that applications with high
arithmetic intensity should see good speedup.



3.6 Workload in the generated CUDA

Just as the language is data-parallel, so too is the generated CUDA. The kernels frequently
consist of a loop where a regular arithmetic computation is performed to the task’s designated
element of a large input array. In fact, the highly regular style of parallelism encouraged in
GPU programming made a data-parallel language very attractive as the source.

4 Approach

4.1 Technologies used

The compiler is written in OCaml, version 4.05.0. If you wish to build and run the compiler
yourself, installation instructions for all necessary packages are included in the README of
the GitHub repository.

The compiler generates CUDA that can be compiled with nvcc version 2.0 or later. We
additionally make use of the Thrust library for some parallel primitives, like scan. Benchmarks
for the output of the compiler were run on an AWS g2.2xlarge instance. This runs CUDA on
one GPU in a Grid K250 GRID board, with 1536 cores, 800MHz core clock, 4GB of GDDR5
RAM, and a PCl-e x16 Gen3 interconnect.

A testing harness is included with the GitHub repository that makes it easy to verify the
correctness and performance of the generated CUDA.

4.2 Mapping the user program onto parallel hardware

The early phases of the compiler described in Section 3.4 work well to identify available par-
allelism; the translation into CUDA is concerned with mapping that available parallelism onto
GPUs. If an expression of the form for (type x : xs) { stmts } is translated into a ker-
nel launch, elements of xs are blocked into contiguous sections of memory and assigned, in
sequence, to CUDA threads.

The contiguous blocking of the input data, in addition to achieving high locality within a
single thread, is ideal for CUDA’s mapping of threads onto warps. Our kernels generally do not
contain branches (only doing so in the presence of filter_with), and so the shared instruction
stream among the 32 threads on a single warp can easily be executed in lockstep.

4.3 Iteration process

Writing an end-to-end compiler is no easy task, so our iteration effort was concentrated on
devising performant solutions to the issues that arise in writing a translation. Below, we list
some of our iterations, including the performance problems we encountered that necessitated
the iteration.

1. Improve coverage of traversals. An important aspect of our compiler is the fact that
it considers many possible traversals of the program’s dag before deciding on the most
efficient one. The topological sort of the input program is non-trivial because a for-block
is a vertex of the control flow graph that has a nested control flow graph of its own, in the
form of the statement body which will be translated to a kernel launch. Earlier iterations
of our compiler never traversed the nested control flow graph before evaluating the for-
expression itself; we improved later iterations to allow for the extraction of instructions
from inside a for block.

For example, take the program:



return for (int x : xs) {
int y = reduce(*, 1, ys);
return (int z : zs) {

}
}

Later iterations of our compiler will try a traversal where the statement reduce(x, 1,
ys) is performed prior to the kernel launch over xs since the statement does not depend
on X.

2. Prioritize highly-nested parallelism. In this iteration, we decided which heuristics to
prioritize when selecting the “best” output CUDA program out of the alternatives. We
found that the loop fusion described in section 3.4 of the loop was highly effective in
improving speedup. Multiplying two 1024 x 1024 matrices decreased to 0.911s from 1.34s
when prioritizing the highly-nested parallelism.

3. Use Thrust primitives for scan and reduce. Thrust’s inclusive scan operation provides
pre-packaged parallelism with exactly the desired semantics of our language’s scan and
reduce, so allow the compiler to generate candidate programs where these operations are
performed in parallel. Earlier iterations would just perform these sequentially.

4. Keep track of sizes of filtered data. In the presence of nested for loops that return a
filtered array, it is necessary to allocate extra buffers to store the filtered length of the
returned arrays. Implementing this iteration did not improve performance, but it did
improve the flexibility of where filtered data could be created and consumed.

5. Block data. Assigning contiguous blocks of elements to each CUDA thread rather than
single elements improved our benchmark programs’ efficiency, especially the calculation
of the Julia set.

5 Results

We benchmark the compiler’s performance by measuring the execution performance of the pro-
gram that the compiler outputs for a given source program. To analyze the compiler’s heuristics,
we show benchmarks using a “naive” output (Bad), versus an optimized output (Good). We
have structured our compiler such that it intentionally considers and optimizes programs that
are likely to display better parallelism first. This is more apparent in the complex examples with
a wider decision space. We benchmark against a vectorized C implementation on a program
with a lot of communication, to display our blocking strategy (Matrix Multiply), a program with
potentially low arithmetic intensity (Convolve), and a program with high arithmetic intensity
(Julia). Additionally, we sometimes isolate benchmarking to the kernel launch itself, trying to
get a sense of the performance irrespective of memory transfer overheads.

On MatrixMultiply, we notice that our test program does not benefit from our naive CUDA
implementation at small input sizes. Initially we theorized that this results from overhead of
GPU access and communication, but upon benching the program we found that the kernel in
fact takes up almost the entirety of this time. Upon implementing heuristics in our compiler
(merging nested parallel blocks,and implementing blocking), we notice much better output,
gaining a performance increase over the C version that increases significantly as the input size
passes 2MB and the naive version starts missing the L2 cache.
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In the Julia example, we benchmark a program to render a monochrome image of the Julia
set (shown at the foot of this report). This shows our project’s performance at its best—
rendering the Julia set is an embarassingly parallel problem with high arithmetic intensity
(lots of compute, very little communication), and no branch divergence. It demonstrates our
language’s ability to use both indexing schemes and merge nested parallel loops. The overheads
are minimal—we are transferring very little memory to the GPU—and the numbers demonstrate
this large degree of parallelism, with a fairly stable speedup that may eventually fall victim to
adverse memory effects at very high resolutions.
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In the convolution example, we perform a 3x3 convolution. This has relatively low arithmetic
intensity (we perform the 9 arithmetic operations sequentially for each pixel), and we see a lot of
overhead occurring here, as the kernel outperforms the naive implementation significantly, but
the total overhead including transfer time and memory allocation is a much larger percentage
of the execution time than in MatrixMultiply or Julia. Additionally, we do not perform well
with CUDA’s abstractions: since we store data in 1D arrays to lessen indirection, our method
of mapping the convolve creates a lot of communication and accesses with poor spatial locality.



Our performance improves (relative to the naive version) at larger sizes as the same factors take
effect in that version as well.

5.1 Analysis

There are a number of factors to consider when optimizing GPU performance integrating into
source code. As we compile and link to entirely host code (the programmer never works di-
rectly with the parallel hardware), we incur a significant overhead in transferring and allocating
memory for smaller programs with low arithmetic intensity. We attempt to minimize memory
allocation and copying wherever possible within the generated DAG code itself by using the ar-
ray views and indexing schemes discussed above, but these factors can weigh heavily in smaller
benchmarks. We also consider compile-time performance as a limiting factor—when the search
space of possible traversals and generated programs is very high, we cannot feasibly evaluate all
of the options, and our compiler will only consider a limited subset of possible programs that
are likely to be better in order to terminate in a reasonable amount of time.

Additionally, we note that the examples considered here all represent fairly regular paral-
lelism, as the language constrains the expression of irregularly parallel workloads.

6 Work Distribution

Nick Roberts and Dan Cascaval were the contributors to this project.

Nick took the lead on many aspects related to the design of the source language and the
construction of a translation to efficient CUDA. To be more concrete, he:

e designed the structure and semantics of the source language in a way that made parallel
abstractions available at low cost to the programmer,

e created efficient translations of array views to avoid unnecessary memory allocation,

e implemented language features such as the parallel for expression (a kernel launch),
filtering (keeping track of lengths of filtered arrays in memory for future use), reduction,
and scan,

e created the explicit dag representation of the program and wrote a topological sort that,
in particular, allowed for the extraction of instructions out of kernel launches, and

e designed data structures for the compiler phases, most prominently the CUDA translation
phase where it is necessary to keep track (statically) of lengths and virtual indexing
schemes for all array views used in the program.

In addition to working on various aspects of the compiler, Dan took the role of benchmarker
and performance engineer. He:

e incorporated parallel implementations of scan, reduce, and transpose into the translation,

e implemented miscellaneous language features, like structs, arithmetic, and range expres-
sions,

e wrote several programs in the source Dag language, such as the Julia set, circle renderer,
convolutions, and various stress/correctness tests for language features.
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e wrote a testing harness for determining the performance and correctness of a variety of
Dag programs against sequential and vectorized C versions, and

e ran benchmarks and performed manual editing against the CUDA translation to inform
which heuristics to use for choosing among alternatives and to identify sources of slowness.

Each team member’s contributions complemented the other’s. The contributions were of a
different nature, and it is imprecise to try to compare across natures, so instead we compare
effort. We roughly designate 50-50 credit between the partners.

Julia Set, rendered by one of our compiler’s benchmarks.
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